منابع مشابه
Rough singular integrals on product spaces
where, p.v. denotes the principal value. It is known that if Φ is of finite type at 0 (see Definition 2.2) and Ω ∈ 1(Sn−1), then TΦ,Ω is bounded on Lp for 1<p <∞ [15]. Moreover, it is known that TΦ,Ω may fail to be bounded on Lp for any p if the finite-type condition is removed. In [8], Fan et al. showed that the Lp boundedness of the operator TΦ,Ω still holds if the condition Ω ∈ 1(Sn−1) is re...
متن کاملParabolic Marcinkiewicz integrals on product spaces
In this paper, we study the $L^p$ ($1
متن کاملBoundedness of Singular Integrals in Weighted Anisotropic Product Hardy Spaces
Let Ai for i = 1, 2 be an expansive dilation, respectively, on R n and R and ~ A ≡ (A1, A2). Denote by A∞(R × R; ~ A) the class of Muckenhoupt weights associated with ~ A. The authors introduce a class of anisotropic singular integrals on R×R, whose kernels are adapted to ~ A in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors est...
متن کاملSingular Integrals with Mixed Homogeneity in Product Spaces
Let Ω ∈ L(logL+)2(Sn−1 × Sm−1) (n, m 2) satisfy some cancellation conditions. We prove the Lp boundedness (1 < p < ∞ ) of the singular integral T f (x1,x2) = p. v. ∫ ∫ Rn×Rm Ω(y1,y ′ 2)h(ρ1(y1),ρ2(y2)) ρα 1 (y1)ρ β 2 (y2) f (x1 − y1,x2 − y2)dy1 dy2, where ρ1 , ρ2 are some metrics which are homogeneous with respect to certain non-isotropic dilations. We also study the above singular integral alo...
متن کاملparabolic marcinkiewicz integrals on product spaces
in this paper, we study the $l^p$ ($1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1982
ISSN: 0001-8708
DOI: 10.1016/s0001-8708(82)80001-7